16 research outputs found

    A study on the introduction of artificial intelligence technology in the water treatment process

    Get PDF
    Thesis(Master) --KDI School:Master of Public Mangement,2020.Today, we stand in front of a huge wave of change named the "Fourth industrial revolution." Key technologies of the Fourth Industrial Revolution include artificial intelligence, the Internet of Thing (IoT), cloud computing, big data analysis, etc. These technologies will lead to an intelligent information society, and platform services will change every aspect of society from economic and work. This paper proposes several introductions of Artificial Intelligence Technology to improve water management. AI Technology secure a leadership position in the unfolding revolution and expedite the realization of an intelligent information company. K-water has to secure innovative technologies in advance as the foster related industries and upgrade services in order to generate new value and ensure the competitiveness of its intelligent water system. The K-water should take significant steps to thoroughly prepare for the coming Fourth Industrial Revolution, such as Artificial Intelligence-based autonomous Water Purification Plant with developing a creative water treatment process. The artificial intelligence system will be able to secure technological competitiveness in the water industry and secure future growth engines in the water industry by securing intelligence information technology, which is key to the fourth industrial revolution.Ⅰ. Introduction Ⅱ. Review of Literature and Cases III. Analysis of AI Technology Application in Water Treatment Ⅳ. Recommendation for the Standard Model of Artificial Intelligence â…€. ConclusionmasterpublishedSeong Il, JEONG

    Identification and Phylogenetic Analysis of Chitin Synthase Genes from the Deep-Sea Polychaete Branchipolynoe onnuriensis Genome

    No full text
    Chitin, one of the most abundant biopolymers in nature, is a crucial material that provides sufficient rigidity to the exoskeleton. In addition, chitin is a valuable substance in both the medical and industrial fields. The synthesis of chitin is catalyzed by chitin synthase (CHS) enzymes. Although the chitin synthesis pathway is highly conserved from fungi to invertebrates, CHSs have mostly only been investigated in insects and crustaceans. Especially, little is known about annelids from hydrothermal vents. To understand chitin synthesis from the evolutionary view in a deep-sea environment, we first generated the whole-genome sequencing of the parasitic polychaete Branchipolynoe onnuriensis. We identified seven putative CHS genes (BonCHS1-BonCHS7) by domain searches and phylogenetic analyses. This study showed that most crustaceans have only a single copy or two gene copies, whereas at least two independent gene duplication events occur in B. onnuriensis. This is the first study of CHS obtained from a parasitic species inhabiting a hydrothermal vent and will provide insight into various organisms’ adaptation to the deep-sea hosts

    Identification and Phylogenetic Analysis of Chitin Synthase Genes from the Deep-Sea Polychaete <i>Branchipolynoe onnuriensis</i> Genome

    No full text
    Chitin, one of the most abundant biopolymers in nature, is a crucial material that provides sufficient rigidity to the exoskeleton. In addition, chitin is a valuable substance in both the medical and industrial fields. The synthesis of chitin is catalyzed by chitin synthase (CHS) enzymes. Although the chitin synthesis pathway is highly conserved from fungi to invertebrates, CHSs have mostly only been investigated in insects and crustaceans. Especially, little is known about annelids from hydrothermal vents. To understand chitin synthesis from the evolutionary view in a deep-sea environment, we first generated the whole-genome sequencing of the parasitic polychaete Branchipolynoe onnuriensis. We identified seven putative CHS genes (BonCHS1-BonCHS7) by domain searches and phylogenetic analyses. This study showed that most crustaceans have only a single copy or two gene copies, whereas at least two independent gene duplication events occur in B. onnuriensis. This is the first study of CHS obtained from a parasitic species inhabiting a hydrothermal vent and will provide insight into various organisms’ adaptation to the deep-sea hosts

    Graphene Via Contact Architecture for Vertical Integration of vdW Heterostructure Devices

    No full text
    Two-dimensional (2D) devices and their van der Waals (vdW) heterostructures attract considerable attention owing to their potential for next-generation logic and memory applications. In addition, 2D devices are projected to have high integration capabilities, while maintaining nanoscale thickness. However, the fabrication of 2D devices and their circuits is challenging because of the high precision required to etch and pattern ultrathin 2D materials for integration. Here, the fabrication of a graphene via contact architecture to electrically connect graphene electrodes (or leads) embedded in vdW heterostructures is demonstrated. Graphene via contacts comprising of edge and fluorinated graphene (FG) electrodes are fabricated by successive fluorination and plasma etching processes. A one-step fabrication process that utilizes the graphene contacts is developed for a vertically integrated complementary inverter based on n- and p-type 2D field-effect transistors (FETs). This study provides a promising method to fabricate vertically integrated 2D devices, which are essential in 2D material-based devices and circuits.N

    Ambipolar Nonvolatile Memory Behavior and Reversible Type-Conversion in MoSe2/MoSe2 Transistors with Modified Stack Interface

    No full text
    2D semiconductor devices have been studied due to their unique potential in architecture and properties. As one of the unique devices approaches, 2D hetero-stack channel field-effect transistors (FETs) have recently been reported, but homo-stack FETs are rare to find. Here, MoSe2/MoSe2 homo-stack transistors are rather fabricated for study. Unlike the equivalently-thick single MoSe2 FET, homo-stack FETs show n-type memory behavior that originates from stack interface-induced traps. Particularly, when their stack interfaces are engineered by surface oxidation of bottom MoSe2, more stable nonvolatile memory behavior turns out. Short-term ultraviolet ozone (UVO)-induced oxidation only results in n-type memory, but 15 min-long oxidation surprisingly enables both n- and p-type nonvolatile memory behavior due to nm-thin MoOx embedded between upper and lower MoSe2. Furthermore, by alternating gate voltage pulse to the 15 min-long UVO-treated FETs, channel polarity conversion appears reversible in a small gate voltage (V-GS) sweep range, which means that the channel type of a transistor can be reversibly modulated via stack interface engineering. It is believed that homo-stack interface engineering must be one of the approaches to maximize the potential of 2D devices.11Nsciescopu

    Ferroelastic–Ferroelectric Multiferroicity in van der Waals Rhenium Dichalcogenides

    No full text
    © 2022 Wiley-VCH GmbH.2D multiferroics with combined ferroic orders have gained attention owing to their novel functionality and underlying science. Intrinsic ferroelastic–ferroelectric multiferroicity in single-crystalline van der Waals rhenium dichalcogenides, whose symmetries are broken by the Peierls distortion and layer-stacking order, is demonstrated. Ferroelastic switching of the domain orientation and accompanying anisotropic properties is achieved with 1% uniaxial strain using the polymer encapsulation method. Based on the electron localization function and bond dissociation energy of the Re–Re bonds, the change in bond configuration during the evolution of the domain wall and the preferred switching between the two specific orientation states are explained. Furthermore, the ferroelastic switching of ferroelectric polarization is confirmed using the photovoltaic effect. The study provides insights into the reversible bond-switching process and potential applications based on 2D multiferroicity.11Nsciescopu
    corecore